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LETTER TO THE EDITOR

Fluctuations in a spin-glass model with one replica
symmetry breaking

M E Ferrero, G Parisi and P Ranieri
Dipartimento di Fisica, Università di Roma La Sapienza and INFN sezione di Roma I,
Piazzale Aldo Moro, Roma 00185, Italy

Received 5 August 1996

Abstract. We discuss Gaussian fluctuations in a spin-glass model with one replica symmetry
breaking (RSB) and we show how non-perturbative fluctuations of the break-point parameter
can be included in the longitudinal propagator within linear response theory.

The aim of this letter is to discuss the fluctuations and more generally the corrections to the
mean field theory of spin-glass models where first-order replica symmetry breaking occurs.
We remind the reader that replica symmetry can be broken in two different ways [1]:

• The functionq(x) is discontinuous and it takes only a finite number of values (in
most cases two). Here the functionP(q) is the sum of a finite number of delta functions.
For example, in the case of only one step (1RSB) we have

qm(x) = q0 for x < m qm(x) = q1 for x > m. (1)

The corresponding functionP(q) is given by

P(q) = mδ(q − q0) + (1 − m)δ(q − q1). (2)

• The functionq(x) is a continuous function and in this case also the functionP(q)

has a continuous part.
Some models, such as the Sherrington–Kirpatrick (SK) and the Edwards–Anderson

model, belong to the second category; other models, such as the random energy model,
Ising spins withp interactions andp > 2, the q-state Potts model withq > 4 and the
ROME (random orthogonal matrix ensemble), belong to the first category.

The computation of the fluctuations and the corrections to the saddle-point limit are
rather difficult in the second case, where the form of the propagators is quite involved, and
requires many powerful tools [2].

In the first case (1RSB) the situation was assumed to be much simpler, the propagator
being explicitly computed taking care of only the fluctuations ofq0 andq1. The problems
arise when the fluctuations in the variablem are considered.

Fluctuations changingm by a small amount are small in some sense and they have to
be taken into account in the computations, but in some other sense they are large and the
usual formalism (as we shall see) does not take them into account and must consequently be
modified. Indeed, it is true that whenm → m̃, qm(x) → qm̃(x) in some sense (for example
in the Lp norm with finitep), but the quantity

sup
x

(qm(x) − qm̃(x)) ≡ |qm − qm̃|∞ (3)
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does not go to zero in this limit.
One of the first results suggesting the necessity of taking care of fluctuations which

correspond to variations ofm is the following [3]. In the random energy model (REM) of
Derrida the free energy can be written as

F(β) = − N

βm
log 2+ Nβm

2
. (4)

The correct result is obtained as a saddle point inm for largeN . Corrections proportional to
1/N to the free energy density are clearly connected to fluctuations inm, while if we consider
the formalism of [4] and represent the REM as a Ising model with ap-spin interaction these
corrections cannot come from fluctuations in theq parameters, which vanish in this limit.

More recently it has been shown (see [5]) that if one does not take into account the
fluctuations ofm one obtains the wrong result for the specific heat while the correct result
could be obtained by taking into account them-fluctuations using a simple (but at this stage
arbitrary) prescription.

The aim of this note is to compute part of the fluctuations (the so-called longitudinal
propagator) by using the linear response theory, i.e. by evaluating the variation of the
function q(x) with respect to an external perturbation. This propagator contains singular
terms, which are not found using the conventional approach. Correct results for the specific
heat are obtained using this improved propagator.

We postpone the computation of the full propagator to a future investigation. Here we
limit ourselves to the computation of the longitudinal propagator.

1. The model

We use in our analysis a simple model that we consider representative of the class of models
with a 1RSB saddle point. The model is simply obtained by adding an additional cubic
term to the usual truncated free energy (W in the following), i.e.

W [Q] = − lim
n→0

1

n

(
τ

2
TrQ2 + 1

6
TrQ3 + α

6

∑
ab

(Qab)
3 + β

12

∑
ab

(Qab)
4

)
(5)

where τ = Tc − T and Tr stands for trace. We recall that in the SK modelα = 0 and
β = 1 (while, for example, in the three-state Potts modelα = 1

2 and β is negative [6]).
In the framework of the Parisi ansatz, the saddle point ofQ is looked for in a subspace in
which Q can be expressed in terms of a functionq(x) defined in the interval [0, 1]. In this
subspace the functionalW [Q] is given by

W [q] =
∫ 1

0
dx

[
τ

2
q2(x) − 1

6

(
xq3(x) + 3q2(x)

∫ 1

x

q(y) dy

)
+ α

6
q3(x) + β

12
q4(x)

]
. (6)

Below Tc, stationarity with respect to the order parameter yields the 1RSB solution

qm(x) = q1θ(x − m) (7)

where the parametersq1 and m (q0 = 0) are obtained by the saddle-point conditions as a
perturbative series inβ,

q1 ' τ

1 − α
+ 5

6

βτ 2

(1 − α)3
+ 25

18

β2τ 3

(1 − α)5

m ' α + βτ

1 − α
+ 5

6

β2τ 2

(1 − α)3
. (8)
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The role played by the additional cubic term is to provide a breaking of replica symmetry
which is located atm ' α while it is well known that in the SK modelm ∼ βτ . To
investigate the stability of this saddle point with respect toQ fluctuations we need the
eigenvalues of the matrix

Mab,cd = ∂2W

∂Qab∂Qcd

. (9)

We find that the eigenvalues of this Hessian†, which should be positive in order to have a
stable saddle point, are

λ0 = λ1,0 = −τ − q1(m − 1) → −βq2
1/6

λ1 = λ1,1 = −τ − αq1 − βq2
1 − q1(m − 2) → −βq2

1/6 + q1(1 − m)

= λ2,0 = −τ − q1(m/2 − 1) → −βq2
1/6 + q1m/2

= λ2,1 = −τ − αq1 − βq2
1 − q1(m/2 − 2) → −βq2

1/6 + q1(1 − m/2)

= λ0,1,1 = −τ − q1(m − 1) → −βq2
1/6 (10)

= λ1,2,2 = −τ − αq1 − βq2
1 + q1 → −βq2

1/6

λ0,1,2 = λ0,2,1 = −τ − q1(m/2 − 1) → −βq2
1/6 + q1m/2

= λ0,2,2 = −τ + q1 → −βq2
1/6 + q1m.

Using the saddle-point values, we find that the minimum eigenvalue belongs to four
degenerate subfamilies (λ0 = λ1,0 = λ0,1,1 = λ1,2,2) and it is proportional to−βτ 2. This
shows that a coefficientα 6= 0 allows the prescription of keeping a negative coefficientβ

in order to have a stable 1RSB ansatz (see also [8]), without a negative value form and
without a negative eigenvalue.

2. Fluctuations

Let us now consider this model in the Gaussian approximation. Our aim is to derive, within
linear response theory, a longitudinal propagator which takes into accountm fluctuations.
In order to have a consistent check of our computation, at the end of this section we
shall compare the specific heat obtained through this improved propagator with the usual
expression obtained through the saddle-point solution.

In the replica approach, the longitudinal propagator can be computed in the discrete
formulation of replica symmetry breaking, i.e. by using the parametersq0, q1 andm and the
global variationsδq0, δq1 andδm (as done in [5]), or by considering the functionq(x) (see
equation (6)) and the local variationsδq(x) (eventually followed by integration). Clearly,
if we work in the local formulation, that is the first step toward the analysis in the full
space, we need a method to deal with them fluctuations. As previously mentioned, these
fluctuations induce non-perturbative (not small in the sense of equation (3)) variations on
the functionq(x) and it is unclear how they can be taken into account in a perturbative
computation.

In order to take into account these fluctuations let us introduce in this model an external
field conjugate with the order parameter:

W [q] → W [q] +
∫ 1

0
q(x)ε(x) dx. (11)

† For a complete and general analysis of the eigenvectors structure in the replica approach, see [7]. In what
follows we use the notation presented in [7].
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The perturbation induced by this field on the saddle-point solution can be parametrized as
follows:

qε
m(x) = q1θ(x − m − δm) + δq(x). (12)

Within linear response theory, we define the longitudinal propagator by considering the
response with respect toε, i.e.

G(x, y) = δqε
m(x)

δε(y)
= −q1δ(x − m)

δm

δε(y)
+ δq(x)

δε(y)
. (13)

The equations for the two components of the propagator follow from the equations of
motion with the sourceε 6= 0 and from their expansion to first order inε, i.e.

δW [q]

δq(x)

∣∣∣∣
q=qε

= ε(x) (14)

∂W [qε ]

∂m
= −q1ε(m). (15)

Using this procedure we manage to consider in a perturbative approach a non-perturbative
contribution. On the one hand the variationsδq(x) and δm defined in equations (12)
and (13) play a different role. The introduction ofδ(x − m) as a multiplicative factor of
the componentδm/δε(y) is crucial in (13) because this delta-function separates the two
contributions without ambiguities. On the other hand, the two equations (14) and (15) are
qualitatively different: the first is a functional derivative of the free energy functionalW [q]
while the latter is a derivative of a functionW(qε(x)) = W̃q1,m(δq(x), δm) with respect to
δm.

Therefore, while in equation (15) the distribution functions are integrated and no
ambiguity exists, in equation (14) we have to deal with products of distribution functions
(i.e. θ2(x − m), θ(x − m)δ(x − m) and θ2(x − m)δ(x − m)). These products are, at this
stage, ill-defined and a regularization scheme is necessary. In what follows we choose a
regularization such that

θk(x − m) = θ(x − m) (16)

θk−1(x − m)δ(x − m) = 1

k
δ(x − m) (17)

where the functionδ(x − m) that occurs in equation (13) is defined as the derivative of the
function θ(x − m). Therefore, relation (17) is the derivative of relation (16), that is the
only arbitrary choice we make. One can also see that equation (17) involves the following
prescription to evaluate the integral of the functionqk(x) on a peaked measure:∫ 1

0
q(x)kq1δ(x − m) dx =

∫ q1

0
qk dq = qk+1

1

k + 1
. (18)

By expanding equations (14) and (15) to first order inε and by using (16) and (17) we
obtain following equations for the propagator components:

−q1θ(x − m)

∫ 1

m

dy
δq(y)

δε(z)
+ 1

6
βq2

1
δq(x)

δε(z)
+ 1

2
q2

1θ(x − m)
δm

ε(z)

= δ(x − z)
1

2
q2

1

∫ 1

m

dy
δq(y)

δε(z)
− 1

3
q3

1
δm

δε(z)
= −q1δ(m − z). (19)

The corresponding result for the longitudinal propagator (13) is

G(x, y) = G0δ(x − y) + G1θ(x − m)θ(y − m)

−(GN
0 δ(x − m) + GN

1 θ(x − m))(GN
0 δ(y − m) + GN

1 θ(y − m)) (20)
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where

G0 = 1

q2
1β/6

G1 = 1

q2
1β/6

q1

(q2
1 β/6 − (1 − m) q1)

GN
0 =

(
3(q2

1 β/6 − (1 − m) q1)

q1 (q2
1 β/6 − (1 − m) q1/4)

)1/2

GN
1 =

(
3/4

(q2
1β/6 − (1 − m)q1/4)(q2

1 β/6 − (1 − m) q1)

)1/2

. (21)

Two new terms, overlooked by the usual computation, appear in this longitudinal propagator:
the termsGN

0 andGN
1 . These terms, singular atx ' m, are the effect of them fluctuations.

Let us also note that the asymmetry between the regionsx > m andx < m in this result is
due to the assumptionq0 = 0 on the saddle point.

To conclude, let us verify the previous result and let us investigate its consequence
on physical quantities, such as the specific heat. It is well known that this quantity can be
computed through the free energy evaluated at the saddle point or by computing the energy–
energy fluctuations [9]. The computation of specific heat in the mean field approximation
through the 1RSB saddle point gives

C(τ) = − d2

dτ 2
W [q]SP = − τ

1 − α
− βτ 2

(1 − α)3
− 35

18

β2τ 3

(1 − α)5
(22)

where the dependence of them parameter on the temperature implies a contribution to the
specific heat also from the variation ofm.

On the other hand, by considering the Gaussian fluctuations at zero-loop order and by
using our prescriptions to deal with the distribution functions, we also find that

C(τ) = 1

4

〈 ∫
dx dy q2(x)q2(y)

〉
conn

=
∫ 1

0
dx

∫ 1

0
dy qSP(x)qSP(y)G(x, y). (23)

This shows that the new singular terms, which with our prescription (18) produce an
effect in the computation of the physical quantity (23), are necessary to recover the correct
result. Because of the nature of thex variable in the replica approach, the prescriptions
for the singular measures are necessary to recover the correct result, while in the discrete
formalism, where one has to deal with the parametersq1 andm only, the regularization is
not necessary and one naturally recovers the correct result.

In the case of a continuous breaking of the replica symmetry the longitudinal propagator
computed using the linear response theory does coincide with the one obtained by the
conventional approach [10]. Our result, therefore, suggests the following scenario.

• If we break the replica symmetry in a continuous way by adding an appropriate
external field, the longitudinal propagator is correctly given by the conventional techniques.

• If, by removing the external field, the functionq(x) becomes discontinuous, the
longitudinal propagator computed via linear response theory goes to the correct one and,
therefore, the conventionally computed propagator will also tend to the same value, which
is different from the value obtained by applying directly the conventional techniques.

• We may only conjecture that a correct computation of all the components of the
propagator (not only the longitudinal one) may be achieved by using the conventional
approach after having introduced an external field which breaks the replica symmetry in a
continuous way and then by sending the external field to zero.

It is a pleasure to thank Theo Nieuwenhuizen for communicating his results before
publication and for useful discussions. We also thank David Dean for a careful reading
of the manuscript.
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